If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=10Q^2+19Q-15=0
We move all terms to the left:
-(10Q^2+19Q-15)=0
We get rid of parentheses
-10Q^2-19Q+15=0
a = -10; b = -19; c = +15;
Δ = b2-4ac
Δ = -192-4·(-10)·15
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-31}{2*-10}=\frac{-12}{-20} =3/5 $$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+31}{2*-10}=\frac{50}{-20} =-2+1/2 $
| 1-x-3/8=5/12 | | x^2=4+14x | | −2w+6=16 | | 1/(x-1)+3/(x-1)=-8 | | x*2.57=21000 | | 2x200=0.2×x | | 7m+14=53 | | 3a-3a+3=6 | | x*0.6=46800 | | 5x-4÷4x+1=1 | | 14x-15=2x+3 | | 2x+3x=5x+10 | | 2i-2=98 | | |5x+3|=8 | | |2x+6|=5x-3 | | 20x^2-18x-5=0 | | 20/35=x | | m^2=-16 | | 59=7z+3 | | 6k-2=22 | | 7z-2z=4-13 | | (3x-1)(-2x+3)=0 | | x4+3x2−4=0 | | 1,3n=5 | | x-(0.423x=1000) | | (5x+6)(2x+3)=10x^2+2x-2 | | (5x+6)(2x+3)=10x^+2x-2 | | x-(0.42.3x=1000) | | 5x–3(2x+1)=21+x | | (5x+6)(2x+3)=10x+2x-2 | | x-(0.323x)=1000 | | x-(0.323x=1000) |